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Abstract. We present a technique for the estimation of photometric redshifts based on feed-forward neural networks. The
Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF−S from an ultra
deep-multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest
and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the
spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data
and mixed samples. The prediction of the method is tested on the spectroscopic sample in the HDF−S (44 galaxies). Over
the entire redshift range, 0.1 < z < 3.5, the agreement between the photometric and spectroscopic redshifts in the HDF−S is
good: the training on mixed data produces σtest

z � 0.11, showing that model libraries together with observed data provide a
sufficiently complete description of the galaxy population. The neural system capability is also tested in a low redshift regime,
0 < z < 0.4, using the Sloan Digital Sky Survey Data Release One (DR1) spectroscopic sample. The resulting accuracy
on 88 108 galaxies is σtest

z � 0.022. Inputs other than galaxy colors – such as morphology, angular size and surface brightness
– may be easily incorporated in the neural network technique. An important feature, in view of the application of the technique
to large databases, is the computational speed: in the evaluation phase, redshifts of 105 galaxies are estimated in few seconds.
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1. Introduction

Deep multicolor surveys, using a selection of broad- and/or
intermediate-band filters to simultaneously cover the spectral
energy distribution (SED) of a large number of targets, have
been an important part of astronomy for many years but have
remarkably surged in popularity in recent times. Digital de-
tectors and telescopes with improved spatial resolution in all
wavelength regimes have enabled astronomers to reach limits
that were unthinkable only a few decades ago and are now
revealing extremely faint sources (see for a review Cristiani
et al. 2001). A general hindrance for the transformation of this
wealth of data into cosmologically useful information is the
difficulty in obtaining spectroscopic redshifts of faint objects,
which, even with the new generation of 8 m-class telescopes, is
typically limited to I(AB) � 25. This has spurred a widespread
interest in the estimation of the redshift directly from the

photometry of the targets (photometric redshifts). Major spec-
tral features, such as the Balmer Break or the Lyman limit, can
be identified in the observed SED and, together with the over-
all spectral shape, make possible a redshift estimation and a
spectral classification.

The photometric redshift techniques described in the liter-
ature can be classified into two broad categories: the so-called
empirical training set method, and the fitting of the observed
Spectral Energy Distributions by synthetic or empirical tem-
plate spectra. In the first approach (see, for example, Connolly
et al. 1995), an empirical relation between magnitudes and red-
shifts is derived using a subsample of objects in which both the
redshifts and photometry are available (the so-called training
set). A slightly modified version of this method was used by
Wang et al. (1998) to derive redshifts in the HDF−N by means
of a linear function of colors.
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In the SED-fitting approach a spectral library is used to
compute the colors of various types of sources at any plau-
sible redshift, and a matching technique is applied to ob-
tain the “best-fitting” redshift. With different implementations,
this method has been used in the HDF−N (Le Borgne &
Rocca-Volmerange 2002; Massarotti et al. 2001; Sawicki et al.
1997; Fernández-Soto et al. 1999; Benítez 2000; Arnouts et al.
1999a) and ground-based data (Giallongo et al. 2000; Fontana
et al. 1999; Fontana et al. 2000).

A crucial test in all cases is the comparison between the
photometric and spectroscopic redshifts which is typically lim-
ited to a subsample of relatively bright objects.

In the present work, photometric redshifts have been ob-
tained using a Multilayer Perceptron Neural Network (MLP)
with the primary goal of recovering the correct redshift dis-
tributions up to the highest redshifts in deep fields such as
the HDFs. The method has been tested on the HDF−S spec-
troscopic sample (0.1 < z < 3.5) and on a sample of galaxies
(in a relatively low-redshift regime 0 < z < 0.4) from the Sloan
Digital Sky Survey Data Release One (SDSS DR1, Abazajian
et al. 2003).

The structure of this paper is as follows: in Sect. 2 we give
an introduction to the neural network methods. Section 3 de-
scribes the training set for the HDF−S and Sect. 4 the training
technique. In Sect. 5 we apply the method to the spectroscopic
sample in the HDF−S. An application to the SDSS DR1 sam-
ples is described in Sect. 6. Section 7 is dedicated to a general
discussion. Our conclusions are summarized in Sect. 8.

2. Artificial neural networks

According to the DARPA Neural Network Study (1988,
AFCEA International Press), a neural network is a system com-
posed of many simple processing elements operating in parallel
whose function is determined by the network structure, connec-
tion strengths, and the processing performed at the computing
elements or nodes.

An artificial neural network has a natural proclivity for stor-
ing experimental knowledge and making it available for use.
The knowledge is acquired by the network through a learning
process and the interneuron connection strengths – known as
synaptic weights – are used to store the knowledge (Haykin
1994).

There are numerous types of neural networks (NNs) for
addressing many different types of problems, such as mod-
elling memory, performing pattern recognition, and predicting
the evolution of dynamical systems. Most networks therefore
perform some kind of data modelling.

The two main kinds of learning algorithms are: supervised
and unsupervised. In the former the correct results (target val-
ues) are known and given to the NN during the training so that
the NN can adjust its weights to try to match its outputs to the
target values. In the latter, the NN is not provided with the cor-
rect results during training. Unsupervised NNs usually perform
some kind of data compression, such as dimensionality reduc-
tion or clustering.

The two main kinds of network topology are feed-forward
and feed-back. In feed-forward NN, the connections between

Fig. 1. A general scheme of a multilayer Perceptron feed-forward
neural network.

units do not form cycles and usually produce a relatively quick
response to an input. Most feed-forward NNs can be trained us-
ing a wide variety of efficient conventional numerical methods
(e.g. conjugate gradients, Levenberg-Marquardt, etc.) in addi-
tion to algorithms invented by NN researchers. In a feed-back
or recurrent NN, there are cycles in the connections. In some
feed-back NNs, each time an input is presented, the NN must
iterate for a potentially long time before producing a response.

2.1. The multilayer perceptron

In the present work we have used one of the most important
types of supervised neural networks, the feed-forward mul-
tilayer perceptron (MLP), in order to produce photometric
redshifts. The term perceptron is historical, and refers to the
function performed by the nodes. An introduction on Neural
Networks is provided by Sarle (1994a), and on multilayer
Perceptron by Bailer-Jones et al. (2001) and Sarle (1994b). A
comprehensive treatment of feed-forward neural networks is
provided by Bishop (1995).

In Fig. 1 the general architecture of a network is shown.
The network is made up of layers and each layer is fully con-
nected to the following layer. The layers between the input and
the output are called hidden layers and the correspondent units,
hidden units.

For each input pattern, the network produces an output pat-
tern through the propagation rule, compares the actual output
with the desired one and computes an error. The learning algo-
rithm adjusts the weights of the connections by an appropriate
quantity to reduce the error (sliding down the slope). This pro-
cess continues until the error produced by the network is low,
according to a given criterion (see below).

2.1.1. The propagation rule

An input of a node (net j) is the combination of the output of
the previous nodes (oi) and the weights of the corresponding
links (wi j), the combination is linear: net j =

∑
i wi joi. Each

unit has a transform function (or activation function), which
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provides the output of the node as a function of the net.
Nonlinear activation functions are needed to introduce nonlin-
earity into the network. We have used the logistic (or sigmoid)
function: out = 1/[1 + exp(−Knet)] and the tanh function
out = tanh(Knet), for all units. K is the gain parameter fixed
before the learning. By increasing K the activation function ap-
proximates a step. The propagation rule, from the input layer
to the output layer, is a combination of activation functions.

No significant difference has been found in the training pro-
cess between using the logistic and tanh functions.

2.1.2. Back-propagation of the error

The weights, w, are the free parameters of the network and the
goal is to minimize the total error function with respect to w
(maintaining a good generalization power, see below).

The error function in the weight space defines the multi-
dimensional error surface and the objective is to find the global
(or acceptable local) minima on this surface. The solution im-
plemented in the present work is the gradient descent, within
which the weights are adjusted (from small initial random val-
ues) in order to follow the steepest downhill slope. The error
surface is not known in advance, so it is necessary to explore it
in a suitable way.

The error function typically used is the sum-of-squares
error, which for a single input vector, n, is

e{n} =
1
2

∑
i

βi

(
y{n}i − T {n}i

)2
(1)

where yi is the output of the NN and Ti is the target output
value for the ith output node and n runs form 1 to the total
number of examples in the training set. In the present work i =
1, a single output node is used to estimate the redshift (other
nodes could be used to estimate other quantities, such as the
spectral type). The βi terms make it possible to assign different
weights to different outputs, and thereby give priority to the
correct determination of certain outputs. In the gradient descent
process the weight vector is adjusted in the negative direction
of the gradient vector,

∆w = −η ∂e
∂w

(2)

and the new generic weight is

wnew = wold + ∆w.

The amplitude of the step on the error surface is set by
the η-learning parameter: large values of η mean large steps.
Typically η belongs to the interval [0, 1] (where the opening
bracket means that the lower value is excluded). In the follow-
ing application a small value has been used (<0.005) together
with a high value of the gain in the activation functions (K = 5).
If η is too small the training time becomes very long, while a
large value can produce oscillations around a minimum or even
lead to miss the optimal minimum in the error surface.

The learning algorithm used in the present work is the stan-
dard back-propagation. It refers to the method for computing
the gradient of the case-wise error function with respect to the

Fig. 2. A simplified representation of the error surface: the behavior
of the error as a function of 2 weights. The momentum term improves
the minimization during the training phase. Momentum allows a net-
work to respond to the local gradient and also to take into account
of the recent trends in the error surface. Acting like a low-pass filter,
momentum allows the network to ignore small features in the error
surface. Without momentum a network may get stuck in a shallow lo-
cal minimum. With momentum a network can slide through such a
minimum.

weights for a feed-forward network. “S tandard backprop” is a
definition of the generalized delta rule, the training algorithm
that was popularized by Rumelhart, Hinton, and Williams in
Chap. 8 of Rumelhart & McClelland (1986), which remains
one of the most widely used supervised training methods for
neural nets.

This learning algorithm implies that the error function is
continuous and derivable, so that it is possible to calculate the
gradient. For this reason the activation functions (and their fi-
nal combination through the propagation rule) must be con-
tinuous and derivable. From the computational point of view,
the derivative of the activation functions adopted in the present
work is easily related to the value of the function out = F(net)
itself (see Sect. 2.1.1: F′ ∝ out(1−out) in the case F = sigmoid
or F′ ∝ (1 − out2) if F = tanh).

When the network weights approach a minimum solution,
the gradient becomes small and the step size diminishes too,
giving origin to a very slow convergence. Adding a momentum
(a residual of the previous weight variation) to the equations of
the weight update, the minimization improves (Bishop 1995):

wnew = wold + ∆w + α∆wold (3)

where α is the momentum factor (set to 0.9 in our applications).
This can reduce the decay in learning updates and cause the
learning to proceed through the weight space in a fairly con-
stant direction. Besides a faster convergence to the minimum,
this method makes it possible to escape from a local minimum
if there is enough momentum to travel through it and over the
following hill (see Fig. 2). The generalized delta rule including
the momentum is called the “heavy ball method” in the numer-
ical analysis literature (Bertsekas 1995, pp. 78–79).
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The learning algorithm has been used in the so called on-
line (or incremental) version, in which the weights of the con-
nections are updated after each example is processed by the
network. One epoch corresponds to the processing of all exam-
ples one time. The other possibility is to compute the training
in the so called batch learning (or epoch learning), in which the
weights are updated only at the end of each epoch (not used in
the present application).

3. The training technique

During the learning process, the output of a supervised neural
net comes to approximate the target values given the inputs in
the training set. This ability may be useful in itself, but more
often the purpose of using a neural net is to generalize, i.e.
to get some output from inputs that are not in the training set
(generalization). NNs, like other flexible nonlinear estimation
methods such as kernel regression and smoothing splines, can
suffer from either under fitting or over fitting. A network that
is not sufficiently complex1 can fail to fully detect the signal
in a complicated data set, leading to under fitting: an inflexible
model will have a large bias. On the other hand a network that
is too complex may fit the noise, not just the signal, leading
to over-fitting: a model that is too flexible in relation to the
particular data set will produce a large variance (Sarle 1995).
The best generalization is obtained when the best compromise
between these two conflicting quantities (bias and variance) is
reached. There are several approaches to avoid under- and over-
fitting, and obtain a good generalization. Part of them aim to
regularize the complexity of the network during the training
phase, such as the Early Stopping and weight-decay methods
(the size of the weights are tuned in order to produce a mapping
function with small curvature, the large weights are penalized.
Reducing the size of the weights reduces also the “effective”
number of weights (Moody et al. 1992)).

A complementary technique belongs to the Bayesian
framework, in which the bias-variance trade off is not so rel-
evant, and networks with high complexity can be used without
producing over-fitting (an example is to train a committee of
networks, Bishop 1995).

3.1. Generalize error

3.1.1. Early stopping

The most commonly used method for estimating the general-
ization error in neural networks is to reserve part of the data as
a test set, which must not be used in any way during the train-
ing. After the training, the network is applied to the test set,
and the error on the test set provides an unbiased estimate of
the generalization error, provided that the test set was chosen
in a random way.

1 The complexity of a network is related to both the number of
weights and the amplitude of the weights (the mapping produced by
a NN is an interpolation of the training data, a high order fit to data
is characterized by large curvature of the mapping function, which in
turn corresponds to large weights).

In order to avoid (possible) over-fitting during the training,
another part of the data can be reserved as a validation set (in-
dependent both of the training and test sets, not used for updat-
ing the weights), and used during the training to monitor the
generalization error. The best epoch corresponds to the lowest
validation error, and the training is stopped when the validation
error rate “starts to go up” (early stopping method). The disad-
vantage of this technique is that it reduces the amount of data
available for both training and validation, which is particularly
undesirable if the available data set is small. Moreover, neither
the training nor the validation make use of the entire sample.

3.1.2. Committees of networks

As mentioned in the previous sections, an over-trained
NN tends to produce a large variance in the predictions main-
taining a relatively small bias. A method that reduces the vari-
ance (and keeps small the bias) is to use a committee of NNs
(Bishop 1995). Each member of the committee differs from the
other members for the different training history. We have gen-
erated the members using a bootstrap process, varying:

1. the sequence of the input patterns (the incremental learn-
ing method used in the present work is dependent on the
sequence presented);

2. the initial distribution of weights (the starting point on the
error surface);

3. the architecture of the NN (number of nodes and layers).

The final prediction, adopted in the present work, is the mean
and the median of the predictions obtained from the members
of the committee (with 1-σ error or 16 and 84 percentiles).
Averaging over many solutions means reducing the variance.
Since the complexity of the individual member is not a prob-
lem, the trainings have been performed without regularization
and at the lowest training-error the weights have been frozen
and used for the prediction.

This method has displayed a better and stable generaliza-
tion power with respect to a single training (also using the val-
idation set to regularize the learning). Moreover this method
gives a robust estimate of the error bounds for the output of the
network.

For these reasons the training described in the next sections
has been carried out using a committee of networks.

4. The training-set

Since we are using a supervised neural network, we need a
training-set. Each element (example) in the training-set is com-
posed of a pair of vectors: the input pattern and the target.
For our purposes the input pattern contains the Spectral Energy
Distribution (SED) of the objects (but other configurations are
possible: templates with a priori knowledge, SED plus the ap-
parent luminosity in a reference band, the angular size, the mor-
phology, etc.). The target in this application is the redshift.

The training has been tested on the available spec-
troscopic sample in the HDF−S (Cristiani et al. 2000;
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Fig. 3. Spectroscopic redshift distributions of the two fields HDF−N
(dashed line) and HDF−S (solid line).

Rigopoulou et al. 2000; Vanzella et al. 2002; Glazebrook et al.,
http://www.aao.gov.au/hdfs/Redshifts/). The predic-
tion of the redshifts in the HDF−S have been computed follow-
ing different approaches:

1. training on the HDF−N spectroscopic sample using the col-
ors as an input pattern;

2. training on the HDF−N spectroscopic sample using the col-
ors and the apparent luminosity in the I band as an input
pattern;

3. training on both HDF−N spectroscopic sample and a
set of templates obtained from CWW (Coleman, Wu &
Weedman) and/or from Rocca-Volmerange and Fioc (la-
belled RV00 hereafter);

4. training on the CWW or RV00 SEDs alone (without spec-
troscopic redshifts) have also been tested.

The photometry of the HDF−N has been obtained from the
available catalog provided by Fernández-Soto et al. (1999)
whereas the photometric catalog of the HDF−S is provided by
Vanzella et al. (2001) and Fontana et al. (2003).

The sample in the HDF−N contains 150 spectroscopic red-
shifts (Cohen et al. 2000; Dawson et al. 2001; Fernández-Soto
et al. 2001), while the sample in the HDF−S contains 44 spec-
troscopic redshifts (in Fig. 3 the redshift distributions of both
fields are shown).

In order to test the prediction we have used the variance as
a statistical estimator:

σ2
z =

1
N

∑
i

(zNNi − zspeci)
2. (4)

where zNN is the neural prediction, N is the number of galax-
ies, and i= 1...N. In the literature another statistical estimator

is sometimes used, the mean absolute deviation normalized by
the (1 + z) factor (e.g., Labbé et al. 2003):

δz =
1
N

∑
i

|zNNi − zspeci|
1 + zspeci

· (5)

The quantity δz has the advantage to be roughly uniform, while
the variance tends to increase with increasing redshift.

4.1. The input pattern

The magnitudes of the observed objects in a given photometric
system are the input of the network. In the present work the
filters are F300, F450, F606, F814 (WFPC2, HST) and Js, H,
Ks for the near infrared (ISAAC, VLT). If the flux in a given
band has a signal to noise ratio less than 2.0 it is considered
an upper limit in that band, and the value of the flux is set
to 1σ error.

It is convenient to avoid too large input values that could
cause a saturation in the output of the activation functions (sig-
moid or tanh), but it is not necessary to rescale the inputs rigor-
ously in the interval [−1, 1]. A non linear rescaling of the input
values is also useful to make more uniform the function that
the network is trying to approximate.

In the present application the input values have been
rescaled: pi = −0.5+[ fi/ fF814]0.4, where i runs over the follow-
ing bands: F300, F450, F606, Js, H, Ks and fF814 is the flux
in the reference F814 band. When the apparent AB magnitude
in the F814 band, m814, is used as an input (e.g. Sects. 5.1.2
and 5.2.2), it has been normalized as follow:

pF814 =

[
1

(mmax − mmin)

]
([m814 − mmin] − [mmax − m814])

where mmax is 28 and mmin is 18.

5. Redshift prediction on the HDF–S

5.1. Training on the HDF−N

5.1.1. Colors as input pattern

The input pattern contains the colors of the galaxies ( fF300

fF814
, fF450

fF814
,

fF606

fF814
, fJ

fF814
, fH

fF814
, fK

fF814
), normalized as described in Sect. 4.1.

The training has been carried out setting the maximum
number of epochs to 5000. The distribution of weights corre-
sponding to the minimum training error has been stored. We
have verified that 5000 epochs are sufficient in this case to
reach the convergence of the system. Trainings done on 10 000
and 15 000 epochs give similar results.

The dispersion σtest
z obtained for the spectroscopic sample

in the HDF−S is shown in Table 1 (left side). Different archi-
tectures have been used with one and two hidden layers and
different numbers of nodes.

The comparison between zspec and zNN for the architec-
ture 6:10:5:1 (six input nodes, two hidden layers with ten and
five units and one output nodes) is shown in Fig. 4. The result-
ing error is σtest

z = 0.172. The systematic errors are common
to all the explored architectures. In particular there is a clear
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Table 1. Training of different architectures on the HDF−N spectroscopic sample (150 objects) and evaluation on the HDF−S spectroscopic
sample. The number of epochs is 5000, the bootstrap has been computed on 100 extractions (100 members of the committee).

Colors as Colors and magnitudes

input pattern as input pattern

[Net]_Weights 〈σtrain
z 〉 σtest

z δtest
z [Net]_Weights 〈σtrain

z 〉 σtest
z δtest

z

median/mean median/mean median/mean median/mean

[6:10:10:1]_181 0.100 0.190/0.193 0.074/0.078 [7:10:10:1]_201 0.090 0.163/0.171 0.065/0.065

[6:10:9:1]_179 0.103 0.191/0.191 0.074/0.075 [7:10:9:1]_189 0.087 0.174/0.173 0.067/0.065

[6:10:8:1]_167 0.103 0.193/0.203 0.074/0.079 [7:10:8:1]_177 0.083 0.166/0.172 0.066/0.067

[6:10:7:1]_155 0.107 0.192/0.195 0.074/0.075 [7:10:7:1]_165 0.090 0.167/0.175 0.066/0.065

[6:10:6:1]_143 0.107 0.191/0.203 0.076/0.079 [7:10:6:1]_153 0.090 0.162/0.174 0.063/0.066

[6:10:5:1]_131 0.110 0.172/0.184 0.070/0.073 [7:10:5:1]_141 0.093 0.162/0.184 0.064/0.069

[6:9:5:1]_119 0.110 0.183/0.200 0.074/0.078 [7:9:5:1]_128 0.097 0.155/0.171 0.058/0.061

[6:8:5:1]_107 0.120 0.187/0.209 0.075/0.079 [7:8:5:1]_115 0.103 0.158/0.177 0.062/0.065

[6:7:5:1]_95 0.120 0.190/0.214 0.075/0.080 [7:7:5:1]_102 0.103 0.147/0.161 0.056/0.058

[6:6:5:1]_83 0.133 0.211/0.230 0.075/0.077 [7:6:5:1]_89 0.113 0.149/0.159 0.059/0.061

[6:5:5:1]_71 0.153 0.216/0.227 0.076/0.078 [7:5:5:1]_76 0.130 0.140/0.155 0.057/0.060

[6:5:4:1]_64 0.153 0.233/0.247 0.080/0.083 [7:5:4:1]_69 0.130 0.144/0.156 0.059/0.062

[6:5:3:1]_57 0.167 0.263/0.290 0.086/0.093 [7:5:3:1]_62 0.137 0.159/0.170 0.062/0.064

[6:5:2:1]_50 0.213 0.275/0.269 0.088/0.087 [7:5:2:1]_55 0.150 0.154/0.156 0.060.0.061

[6:5:1:1]_43 0.303 0.291/0.290 0.126/0.125 [7:5:1:1]_48 0.240 0.194/0.195 0.074/0.074

[6:20:1]_161 0.300 0.283/0.281 0.117/0.118 [7:20:1]_181 0.237 0.226/0.225 0.086/0.084

[6:15:1]_122 0.293 0.277/0.275 0.116/0.118 [7:15:1]_136 0.230 0.228/0.229 0.087/0.085

[6:10:1]_81 0.273 0.259/0.258 0.105/0.106 [7:10:1]_91 0.223 0.207/0.219 0.083/0.084

[6:5:1]_41 0.340 0.287/0.289 0.117/0.120 [7:5:1]_46 0.273 0.261/0.259 0.097/0.097

† [—] _83...215 0.105 0.190/0.206 0.071/0.075 [—]_93...225 0.086 0.175/0.186 0.065/0.065

† Training and combination of different architectures (n:10:1...12:1). In the second hidden layer the number of units ranges from 1 to 12.

discrepancy for the object at z = 0.173 (ID = 667 in the ta-
bles of Vanzella et al. 2001), due to the insufficient informa-
tion available in that redshift regime. A systematic underesti-
mation for the group of objects at redshift around 1.2 is also
evident. Combining different architectures with different num-
bers of units in the second hidden layer (from 1 to 12), the re-
sult does not change, the dispersion in the test set is compatible
with the dispersion obtained using a fixed architecture.

For networks with a low complexity the error (σtest
z ) starts

increasing together with the 〈σtrain〉 (the 〈σtrain〉 is the mean of
the training errors (σtrain) obtained in the bootstrap). The same
happens with networks with one hidden layer (see Table 1).

These results show that, although one hundred extractions
(100 members) are enough to diminish the random errors, new
information in the training set is needed in order to reduce the
systematic errors.

This is clearly shown in Fig. 5 where we have added to
the training set three objects belonging to the HDF−S spec-
troscopic sample: ID = 667 with the discrepant redshift men-
tioned above and two objects randomly chosen from the group
around redshift 1.2. In the upper panel of Fig. 5 the square sym-
bols represent these three objects used in the training together

with the 150 in the north, the dispersion in the HDF−S is calcu-
lated on the rest of the sample (41 objects, σpart). The training
on the 150 objects gives as prediction σpart = 0.145. By com-
puting the training in the same conditions but with 153 objects
rather than 150, the prediction around redshift 1.2 clearly im-
proves, and a σpart = 0.093 is obtained. The predictions for the
rest of the objects do not change significantly. The improve-
ment for the square symbols is obvious (it is due to the learning
algorithm). The network shows a remarkable ability to learn the
new signal present in the training set.

In the next section the colors together with the apparent
luminosity in the F814 band will be used as input pattern.

5.1.2. Colors and apparent luminosity as an input
pattern

The input pattern contains the colors and the apparent lumi-
nosity in the F814 band. Also in this case we have performed
one hundred training on the 150 galaxies in the HDF−N.
The dispersion σtest

z obtained for the spectroscopic sample in
the HDF−S is shown in Table 1 (right side, “Colors and mag.”).
In general, the predictions are better than the results obtained
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Fig. 4. Comparison between spectroscopic redshift in the HDF−S and
the neural redshift using the colors as an input pattern. The training
has been done on the HDF−N spectroscopic sample, the estimation
of the redshift for each object is the median of 100 predictions and
the error bars represent 1-σ interval. Open circles represent objects
with unreliable photometry and triangles are objects with uncertain
spectroscopic redshift.

with only colors as an input pattern. In this application the mag-
nitude information improves the prediction at low redshift (in
particular for the object ID = 667). On the other hand the scat-
ter at high redshift seems to increase, if compared with the case
with only colors as an input (see Fig. 6). There is still a bias (al-
though reduced) at redshifts around 1.2.

The training on different architectures, 6:10:1:1,
6:10:2:1, ... and 6:10:12:1 (6:10:1...12:1 hereafter) pro-
duces a dispersion similar to that obtained by fixing the
architecture. Also in this case the networks with a low com-
plexity produce a large error both in the 〈σtrain〉 and in the σtest

z .
The same happens with networks with one hidden layer (see
Table 1).

These tests show that the information introduced by the ap-
parent luminosity produces a slight improvement: the error is
always less than the error obtained using only colors (but the
sample is still too small to generalize this result).

The problem concerning the completeness of the training
set is common in the empirical technique for the estimation of
the redshift. There is a well known gap without spectroscopic
redshifts in the interval (1.3, 2) due to the absence of observa-
tional spectroscopic features. Moreover, spectroscopic surveys
are flux limited and the spectroscopic redshifts tend to be avail-
able only for brighter objects. To solve this problem and fill the
above mentioned gap it is useful to introduce in the training set
examples derived from observed or synthetic template SEDs.

Fig. 5. The effects of adding information. Upper panel: comparison
between spectroscopic redshift and the neural redshift for the spec-
troscopic sample in the HDF−S. The training has been carried out
on the HDF−N spectroscopic sample (150 objects, as shown in the
lower panel of the Fig. 4). The partial error (σpart) has been consid-
ered, i.e. the dispersion calculated without the three objects marked
with the open square symbols, see text). Lower panel: comparison
between spectroscopic redshift and the neural redshift for the spec-
troscopic sample in the HDF−S, the open squares symbols show the
three objects that have been used during the training (in addition to
the 150 objects in the HDF−N), this new information improves the
partial error (i.e. the σpart calculated without these three objects), in
particular at redshift around 1.2.

5.2. Combination of training sets

5.2.1. Training on HDF−N mixed with CWW SEDs

Increasing the information in the training data is an obvious
method to improve the generalization.

As a first approach to produce a complete range of
galaxy SEDs we have adopted the templates of Coleman et al.
(1980) for a typical elliptical, Sbc, Scd and Irregular galaxy
plus two spectra of star-forming galaxies (SB1 and SB2 from
the atlas of Kinney et al. 1996). This choice is similar to the
approach of Fernández-Soto et al. (1999) and Arnouts et al.
(1999a) and in the following will be referred to as “CWWK”.

Galaxies have been simulated in the redshift range 0 < z <
6. 3206 SEDs have been drawn from the CWWK templates
with a step in redshift equal to 0.01 (dz = 0.01). Extinction
effects have been introduced (E(B− V) = 0.05, 0.1, 0.2) adopt-
ing a Calzetti extinction law (Calzetti 1997). 12 824 SEDs have
been produced in this way. In the CWWK templates, the evo-
lution is implicitly taken in account by adding the two star-
burst spectra (K) to the non evolving Hubble sequence galax-
ies (CWW).
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Table 2. Training of different architectures on the HDF−N spectroscopic sample and a set of templates derived from CWWK. The evaluation
is on the HDF−S spectroscopic sample. The bootstrap has been computed on 100 extractions (100 members of the committee). In the “training
data” column, “+150” means that the 150 spectroscopic redshifts in the HDF−N have been used in addition to the CWWK SEDs.

[Net]_Weights Epochs Training dz E(B − V) 〈σtrain〉 σtest
z δtest

z

data median/mean median/mean

[6:30:30:1]_1171 1000 3206+150 0.01 0 0.059 0.142/0.143 0.054/0.056

[6:25:25:1]_851 1000 3206+150 0.01 0 0.078 0.132/0.133 0.057/0.056

[6:20:20:1]_581 1000 3206+150 0.01 0 0.062 0.131/0.128 0.056/0.054

[6:15:15:1]_361 1000 3206+150 0.01 0 0.065 0.135/0.128 0.058/0.055

[6:15:10:1]_276 1000 3206+150 0.01 0 0.064 0.131/0.127 0.058/0.055

[6:10:15:1]_251 1000 3206+150 0.01 0 0.078 0.128/0.127 0.060/0.059

[6:10:10:1]_191 1000 3206+150 0.01 0 0.076 0.138/0.133 0.064/0.060

[6:10:5:1]_131 1000 3206+150 0.01 0 0.076 0.138/0.132 0.064/0.062

[6:7:6:1]_104 1000 3206+150 0.01 0 0.106 0.159/0.157 0.076/0.075

[6:5:5:1]_71 1000 3206+150 0.01 0 0.173 0.198/0.186 0.084/0.080

[6:20:20:1]_581 500 12 824+150 0.01 0.0, 0.05, 0.1, 0.2 0.060 0.132/0.135 0.056/0.055

[6:15:10:1]_276 5000 646+150 0.05 0 0.068 0.125/0.127 0.057/0.057

[6:15:10:1]_276 5000 326+150 0.1 0 0.093 0.127/0.128 0.059/0.060

*[6:10:1...12:1]_83..251 10000 326+150 0.1 0 0.086 0.134/0.133 0.062/0.062

* Training on different architectures, in the second hidden layer the number of units ranges from 1 to 12 (6:10:1...12:1).

Fig. 6. Comparison between spectroscopic redshift and the neural red-
shift for the spectroscopic sample in the HDF−S. The training has
been carried out on the HDF−N spectroscopic sample, the estimation
of the redshift for each object is the median of 100 predictions. The
input pattern is composed of colors and the apparent luminosity in the
F814 band. The symbols are the same as in Fig. 4.

A committee of 100 networks has been adopted and the me-
dian and mean values have been used to estimate the redshift.

In Table 2 the prediction for the HDF−S spectroscopic
sample is shown. A series of tests has been carried out both

neglecting the effects of intrinsic extinction and introducing an
extinction effect. No significant difference in the predictions
has been measured. The number of training data and the 〈σtrain〉
are also shown.

The predictions for the HDF−S are clearly improved tak-
ing into account the information derived from the CWWK
templates and remain stable almost independently of the ar-
chitecture (σtest

z � 0.13). Low complexity networks (6:7:6:1
and 6:5:5:1) produce large errors: these are clear cases of
under-fitting in the training data. In Fig. 7 the comparison be-
tween the spectroscopic redshifts and the neural predictions
is shown for the network 6:15:15:1 and bootstrap process.
The prediction improves at redshift around 1 and for the ob-
ject ID = 667 at z = 0.173. At high redshift (z > 2) the un-
certainty of the individual redshift estimates is significantly re-
duced (compare, for example, the error bars at z > 2 in Figs. 4
and 7).

Reducing the step in redshift (dz = 0.01, 0.05, 0.1) and
hence the number of training data, leaves the prediction sta-
ble. The trainings computed on a reduced sample, 326+150 ex-
amples (326 CWWK SEDs and 150 spectroscopic redshifts
in the HDF−N) with dz = 0.1 and 646+150 examples with
dz = 0.05 without extinction, give the same result obtained
with dz = 0.01. This means that the committee of networks
is able to achieve the same fit in the color space also with a
reduced grid.

5.2.2. Training on the HDF−N mixed with Pegase
models

We have also trained the neural system on the HDF−N spectro-
scopic sample and a set of models derived from the most recent
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Fig. 7. Comparison between spectroscopic redshift in the HDF−S and
the neural redshift obtained with a committee of networks and using
as input pattern the colors. The estimation of the redshift for each ob-
ject is the mean of 100 predictions and the error bars represent 1-σ
interval. The training set is composed by CWWK SEDs mixed with
the spectroscopic sample in the HDF−N. The symbols are the same as
in Fig. 4.

version of the code by Fioc and Rocca-Volmerange (Fioc &
Rocca-Volmerange 1997), named Pegase 2.0 (RV00).

In the Rocca-Volmerange code the star formation history
is parameterized by two e-folding star formation time-scales,
one (τg) describing the time-scale for the gas infall on the
galaxy and the other (τ∗) the efficiency of gas to star conver-
sion. By tuning the two time-scales it is possible to reproduce
a wide range of spectral templates, from early types (by using
small value of τg and high value of τ∗) to late types. For the
earliest spectral type, a stellar wind is also assumed to block
any star-formation activity at an age twind. The major advantage
of the Rocca-Volmerange is that it allows to follow explicitly
the metallicity evolution, including also a self-consistent treat-
ment of dust extinction and nebular emission. Dust content is
followed over the galaxy history as a function of the on-going
star-formation rate, and an appropriate average over possible
orientations is computed. Although more model-dependent,
this approach has the advantage of producing the evolu-
tionary tracks of several galaxy types with a self-consistent
treatment of the non-stellar components (dust and nebular
emission). An application of the PEGASE 2.0 code to photo-
metric redshifts has been recently presented by Le Borgne &
Rocca-Volmerange (2002).

We have followed the training technique described in
Sect. 3.1.2. Adopting the scenarios described in Le Borgne
& Rocca-Volmerange (2002) we have obtained three samples
from the RV00 package: 112 824, 28 544 and 14 400 models
with step in redshift dz = 0.025, dz = 0.1 and dz = 0.2,

Fig. 8. Comparison between spectroscopic redshift in the HDF−S and
the neural redshift obtained with a committee of networks and us-
ing as input pattern the colors. The estimation of the redshift for
each object is the mean of 100 predictions and the error bars rep-
resent 1-σ interval. The training set is composed of RV00 models
(bootstrap on 1000 RV00 SEDs and 150 spectroscopic redshifts in
the HDF−N, see Table 3). The symbols are the same as in Fig. 4.

respectively (0 < z < 6). An other training sample has been ob-
tained from the 112 824 sample dimming the fluxes by a factor
of 10 and 100 and considering as the training set the templates
with apparent luminosity in the F814 band less than 27, in this
way 201 757 objects have been carried out.

In the training on mixed samples the RV00 templates pro-
duce slightly better results than the CWWK SEDs. A bootstrap
process of 100 extractions has been carried out: at each ex-
traction a random sequence of the input patterns and a random
initialization of the weights have been adopted. At each extrac-
tion the training has been computed on a set of data composed
by 150 spectroscopic redshifts in the HDF−N and a subset of
models extracted randomly from the RV00 samples. The per-
formance in the south sample is σtest

z � 0.12 (see Table 3).

Figure 9 shows that no significant trend is present over the
epochs when varying the initial distribution of weights and the
sequence of the training data (in the abscissa the epochs and in
the ordinate the difference zNN − zspec). The prediction that the
network becomes stable after the first epochs (greater than 500)
until the maximum epoch (20 000). The spread in the plots
gives an indication of the resulting uncertainty (also the spread
is stable over the epochs).

Adopting a training set composed of RV00, CWWK and
the spectroscopic sample in the HDF−N produces a σtest

z �
0.12, of the same order of the dispersions obtained with
RV00+HDF−N and CWWK+HDF−N as training sets.
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Table 3. Training of different architectures on the HDF−N spectroscopic sample and a set of templates derived from Rocca Volmerange
(redshift in the interval z = 0−6). The evaluation is on the HDF−S spectroscopic sample. The bootstrap has been computed on 100 extractions
(100 members of the committee). In the training data column, “+150” means that the 150 spectroscopic redshifts in the HDF−N have been
used in addition to the RV00 models.

[Net]_Weights Epochs Training dz 〈σtrain〉 σtest
z δtest

z

data median/mean median/mean

[6:20:20:1]_581 2000 1000+150 0.025 0.168 0.118/0.120 0.047/0.050

[6:20:20:1]_581 3000 300+150 0.1 0.171 0.123/0.119 0.054/0.053

[6:20:20:1]_581 5000 150+150 0.2 0.142 0.123/0.116 0.053/0.051

[6:30:30:1]_1171 2000 1000+150 0.025 0.167 0.125/0.119 0.048/0.050

[6:20:20:1]_581 2000 1000+150 0.025 0.168 0.118/0.120 0.047/0.050

[6:10:10:1]_191 2000 1000+150 0.025 0.176 0.111/0.123 0.047/0.052

[6:5:5:1]_71 2000 1000+150 0.025 0.223 0.159/0.164 0.064/0.068

5.2.3. Training on CWWK or RV00 templates

Table 4 summarizes the results of various trainings carried out
only on templates, without the spectroscopic redshifts.

Training on the colors derived from the CWWK tem-
plates produces a dispersion in the HDF−S sample σtest

z =

0.186/0.180 (mean/median) (see Fig. 10). A redshift step
dz = 0.01 and an extinction E(B − V) = 0.0 were adopted
(3206 SEDs in the training set). A bootstrap on 100 extractions
with maximum number of epochs set to 1000 was carried out.
Again, introducing the effects of extinction does not improve
this result.

The fact that the result of the CWWK templates is not catas-
trophic suggest that the CWWK set is sufficiently representa-
tive as far the galaxy spectroscopically observed in the HDF−S
and the precision allowed by broad-band filters is concerned.
On the other hand it might well happen that pushing the ap-
plication to fainter limits or/and to higher precision (for ex-
ample by using intermediate-band filters), the limits of the
CWWK approach – which is based on “local templates” –
could show up.

Training on the colors and the apparent luminosity in the
F814 band (7 inputs) derived from the RV00 models pro-
duces a dispersion in the HDF−S sample σtest

z = 0.158/0.153
(mean, median), better than the estimates obtained with the
CWWK SEDs.

Figure 12 compares the prediction of a NN trained on the
RV00 templates with the spectroscopic redshifts in the HDF−N
and HDF−S. The dispersion turns out to be σtest

z = 0.231 for
the full HDF−N plus HDF−S sample and 0.259 for the HDF−N
only.

In Table 5 the tests on the HDF−S spectroscopic sample
are summarized. The dispersion is calculated for 44 objects
at z < 3.5 and separately in the low-redshift (z < 2) and high-
redshift (z > 2) regimes. In general the performance improves
when the information in the training set increase.

6. Application to the SDSS DR1

The Sloan Digital Sky Survey2 (SDSS; York et al. 2000) con-
sortium has publicly released 134 015 spectroscopic redshifts
(Abazajian et al. 2003). The photometry in the ugriz bands and
various image morphological parameters are also available.

Recently, Tagliaferri et al. (2002) and Firth et al. (2002)
have used neural networks to produce photometric redshifts
based on the SDSS Early Data Release (SDSS EDR, Stoughton
et al. 2002), while Ball et al. (2004) have applied neural net-
works to the DR1 sample.

We have selected the data with the following criteria (see
also Firth et al. 2002): (1) the spectroscopic redshift con-
fidence must be greater than 0.95 and there must be no
warning flags; (2) r < 17.5. Moreover we have adopted the
photometric criteria proposed in Yasuda et al. (2001) for the
star-galaxy separation. An object is classified as a star in any
band if the model magnitude and the PSF magnitude differ by
no more than 0.145. The resulting catalog is almost entirely
limited to z < 0.4. The redshift distribution of the DR1 sample
is shown in Fig. 14.

Two different approaches have been explored in the NN
estimation of the DR1 photometric redshifts:

1. A 7:12:10:1 network with 3000 epochs and 10 different
trainings, carried out changing the initial random distribu-
tions of weights and the sequence of the training examples.

2 Funding for the creation and distribution of the SDSS Archive has
been provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Aeronautics and Space Administration, the
National Science Foundation, the US Department of Energy, the
Japanese Monbukagakusho, and the Max Planck Society. The SDSS
Web site is http://www.sdss.org/. The Participating Institutions
are The University of Chicago, Fermilab, the Institute for Advanced
Study, the Japan Participation Group, The Johns Hopkins University,
the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-
Institute for Astrophysics (MPA), New Mexico State University,
Princeton University, the United States Naval Observatory, and the
University of Washington.
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0 0 0 0

Fig. 9. Predictions of a (6:20:20:1) NN for 44 galaxies in the HDF−S as a function of the epoch (an epoch correspond to the processing of
all the examples one time, as defined in Sect. 2.1.2). The training has been carried out on the spectroscopic sample in the HDF−N and on
RV00 templates, using as an input pattern the colors and the I mag. The ordinate shows the difference between the prediction of the NN, zNN,
at a given epoch and the actual spectroscopic redshift zspec. The numbers in the upper left part of the panels correspond to the galaxy identifiers
in the catalog by Vanzella et al. (2001). Dotted lines correspond to |zNN − zspec| < 0.5.

The “best” distribution of weights corresponds to the lowest
error in the training sample (in almost all cases coincident
with the last epoch). The 7 input nodes are: the colors, the
r-band magnitude, the Petrosian 50 and 90 per cent r-band
flux radii (u − g, g − r, r − i, i − z, r, PetR50, PetR90).

2. A 19:12:10:1 network with 15 000 epochs and a single
training carried out. The additional inputs are in this case
the u-, g-, i-, z-band magnitudes and the Petrosian 50
and 90 per cent flux radii in these bands.

The results in terms of dispersions (σz and |∆z|) and mean off-
sets 〈∆z〉 are summarized in Table 6. Increasing the number of
input nodes and the number of epochs improves only slightly
the result. In particular, Fig. 15 shows the behavior of the

training error for the 19:12:10:1 network as a function of the
“current” epoch, shown until the maximum epoch 3000. It is
worth noting that, because of the incremental learning method
used in the present work (see Sect. 2.1.2), each epoch corre-
sponds to a number of variations of weights equal to the num-
ber of training examples in the training set. This explains why
the predictions of the network are good also at the very begin-
ning (epoch 1) of the training phase.

The highly inhomogeneous distribution of the redshifts (see
Fig. 14) is expected to produce a bias in the estimates, as dis-
cussed in Tagliaferri et al. (2002), since any network will tend
to perform better in the range where the density of the training
points is higher. To investigate this effect two types of training
have been carried out: on a uniform training set and a randomly
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Table 4. Training with various NN architectures on templates derived from CWWK and RV00. The bootstrap has been computed on
100 extractions (100 members of the committee).

[Net]_Weights Epochs Training dz E(B − V) 〈σtrain〉 σtest
z δtest

z sample

data median/mean median/mean

[6:20:20:1]_581 1000 3206CWWK 0.01 0 0.036 0.180/0.186 0.068/0.067 HDF−S

[6:20:20:1]_581 500 12824CWWK 0.01 0, 0.05, 0.1, 0.2 0.044 0.196/0.200 0.067/0.068 HDF−S

[7:20:20:1]_601 10 201757RV00 0.025 – 0.157 0.153/0.158 0.068/0.070 HDF−S

[7:20:20:1]_601 10 201757RV00 0.025 – 0.157 0.259/0.257 0.061/0.062 HDF−N

[7:20:20:1]_601 10 201757RV00 0.025 – 0.157 0.231/0.233 0.064/0.064 HDF−N/S

Fig. 10. Comparison between spectroscopic redshift in the HDF−S
and the neural redshift obtained with a committee of networks and
using as input pattern the colors. The estimation of the redshift for
each object is the mean of 100 predictions and the error bars rep-
resent 1-σ interval. The training set is composed of CWWK SEDs
(3206 SEDs, see Table 2). The symbols are the same as in Fig. 4.

extracted training set. The random and the uniform training sets
are both made of 24 892 galaxies. In the cases of randomly
extracted training sets (Fig. 16 upper panels), a trend in the
training and test phase is evident. It appears as a distortion
around z � 0.1, corresponding to the higher density of train-
ing points (see Fig. 14). The behavior of the diagram using a
uniform training set is more regular (Fig. 16 lower panels).

Due to the large amount of data available, the trainings with
and without the validation set have produced indistinguishable
results. Also the dispersion obtained with a committee of net-
works and with a single member is comparable, therefore no
regularization has been applied and a single training has been
adopted in all cases.

Increasing the number of connections in the architecture of
the network does not cause the results to change significantly.

Fig. 11. Comparison between spectroscopic redshift in the HDF−S
and the neural redshift obtained with a committee of networks and
using as input pattern the colors. The estimation of the redshift for
each object is the mean of 100 predictions and the error bars rep-
resent 1-σ interval. The training set is composed of RV00 models
(112 824 SEDs, see Table 3). The symbols are the same as in Fig. 4.

It is interesting to note that even with a simple network 7:2:5:1
(34 weights and 7 input neurons), the dispersion obtained is
comparable to the 381 weights net (19:12:10:1). The 7:2:5:1
gives σz � 0.027 (|∆z| � 0.021) in the 88 108 test galaxies
sample.

Various photometric redshift techniques (template-fitting,
Bayesian method, polynomial fitting, nearest-neighbor etc.)
have been applied to a similar spectroscopic sample extracted
from the SDSS EDR (see Csabai et al. 2002). They produce in
general significantly worse results in terms of redshift disper-
sion, except for the “Kd-tree”, which shows a σz = 0.025.

7. Summary and conclusions

We have presented a new technique for the estimation of
redshifts based on feed-forward neural networks. The neural
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Fig. 12. Comparison between spectroscopic redshifts (HDF−N
and HDF−S) and the neural redshifts obtained with a committee of
networks, using as an input pattern the colors and the apparent lumi-
nosity in the F814 band derived from RV00 models. The estimation
of the redshift for each object is the median of 100 predictions and the
error bars represent the 1-σ interval.

Table 5. Summary of the different tests performed on
the HDF−S spectroscopic sample (z < 3.5, 44 objects) described in
Sect. 5. The dispersion σz is calculated in a low redshift regime z < 2
(34 objects) and high redshift regime z > 2 (10 objects).

Training set σz (z < 3.5) σz (z < 2) σz (z > 2)

44 objs. 34 objs. 10 objs.

HDF−N 0.172 0.186 0.114

HDF−N mag. 0.162 0.139 0.222

CWWK and HDF−N 0.128 0.131 0.114

RV00 and HDF−N 0.118 0.128 0.094

CWWK 0.186 0.146 0.282

RV00 0.153 0.115 0.237

architecture has been tested on a spectroscopic sample in
the HDF−S (44 objects) in the range 0.1 < z < 3.5 and on
a large sample (113 000 galaxies) derived from the SDSS DR1.

The flexibility offered by NNs allows us to train the net-
works on sets that are homogeneous (i.e. on spectroscopic red-
shifts or simulated templates) or mixed (e.g. on spectroscopic
redshifts and simulated data). The galaxy templates for the
training of the NNs with simulated data have been derived from

Sawiky et al. (2003)

Labbe et al. (2003)

Trujillo et al. (2003)

Fig. 13. Comparison between spectroscopic redshift in the HDF−S
and the neural redshift obtained with a committee of networks and
using as input pattern the colors. The estimation of the redshift for
each object is the mean of 100 predictions and the error bars repre-
sent 1-σ interval. In the left panels, the training set is composed of 150
(HDF−N) and 44 (HDF−S) spectroscopic redshifts (open circles). The
evaluation has been done on the recent sample of spectroscopic red-
shifts (z < 1) provided by Sawicki et al. (2003), filled circles, and on
the large spiral galaxy at z = 1.439, square filled symbol (Labbé et al.
2003) and on the galaxy at z = 1.248, open square symbol (Trujillo
et al. 2003). In the right panels only the evaluation symbols are shown.

high-z (HDF−N) and local (CWWK) observational samples
and from theoretical data (Pégase models).

The training on the theoretical data (colors and I mag.
as input pattern) produces a σtest

z in the HDF−S of the order
of 0.15 (RV00), while the training on the HDF−N spectro-
scopic sample produces σtest

z � 0.18 (colors as input pattern)
and σtest

z � 0.15 (colors and apparent I luminosity as in-
put pattern). The training on mixed samples (observed SEDs
with spectroscopic redshift (HDF−N) and theoretical SEDs
(CWWK or RV00 models)) improves the prediction, and a dis-
persion of the order of σtest

z � 0.11 is reached.
At the end of the training the NN contains “experience” that

is a combination of the observed data and the models.
It is interesting to note that the spectroscopic sample in

the HDF−S can be used either as a part of the training set or as
a validation set in order to calibrate and tune the prediction (at
least for the brighter objects) and that with the increasing avail-
ability of spectroscopic redshift the prediction can be continu-
ally improved. As an example we have used both the HDF−N
and the HDF−S spectroscopic samples (194 objects in total) to
predict with a 6:20:20:1 architecture the redshifts of 33 galax-
ies in the range 0.1 < z < 1.5 recently published by
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Table 6. SDSS – DR1: training on 24 892 galaxies (uniform and random sample). Test on 88 108 galaxies. The mean values are derived
from 10 trainings by varying the initial random distribution of weights and the sequence of the training examples. In the first 2 rows 7 inputs
nodes have been used (u − g, g − r, r − i, i − z, r, PetR50, PetR90). Rows 3 and 4 correspond to a single training and 19 inputs have been
used (u − g, g − r, r − i, i − z, u, g, r, i, z, PetU50, PetU90, PetG50, PetG90, PetR50, PetR90, PetI50, PetI90, PetZ50, PetZ90).

Net W Epochs Training 〈σz〉 〈|∆z|〉 〈∆z〉 〈σz〉 〈|∆z |〉 〈∆z〉
data (Train) (Train) (Train) (Test) (Test) (Test)

7:12:10:1 273 3000 24 892unif 0.026± 0.0002 0.018± 0.0002 0.000 0.024± 0.0007 0.017± 0.0005 0.004

7:12:10:1 273 3000 24 892rand 0.023± 0.0005 0.017± 0.0004 0.000 0.023± 0.0004 0.017± 0.0004 0.002

Net W Epochs Training σz |∆z| 〈∆z〉 σz |∆z | 〈∆z〉
19:12:10:1 381 15 000 24 892unif 0.025 0.017 0.002 0.023 0.017 0.001

19:12:10:1 381 15 000 24 892rand 0.021 0.016 −0.001 0.022 0.016 −0.002

Fig. 14. Redshift distribution of the spectroscopic sample obtained
from the SDSS DR1 (113 000 galaxies, solid line). The dashed line
represents the distribution of the neural redshift prediction of the test
sample (88 108 galaxies) normalized to the total sample obtained with
a 19:12:10:1 architecture (see text).

Sawicki et al. (2003), Labbé et al. (2003) and Trujillo et al.
(2003). The resulting dispersion turns out to be σz = 0.066
(Fig. 13).

A reference dataset estimating photometric redshifts in
the HDF−S down to IAB � 27 has been produced: the train-
ing has been performed on a set composed of RV00 mod-
els, 150 spectroscopic redshifts in the HDF−N and 77 spec-
troscopic redshifts in HDF−S.

The better generalization obtained using a committee of
networks with respect to a single network is more evident in the
case of small training sets (Sects. 5.1 and 5.2). If the training set

Fig. 15. Behavior of the prediction as a function of the epochs for the
SDSS DR1 sample. The non-uniform training sample has been used
with the 19:12:10:1 architecture. 3000 epochs have been computed,
the training and test errors are shown as a function of the epoch.

is sufficiently complete and representative, good generalization
can be achieved also with a single training.

In summary the NN approach introduces the following
advantages:

1. Rapidity in the evaluation phase with respect to more con-
ventional techniques and possibility to deal with very large
datasets. The redshifts of 105 galaxies can be estimated in
few seconds (using a laptop with PIII, 1.1 GHz).

2. The system can quickly learn new information, for example
when new spectroscopic redshifts become available.
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Fig. 16. Redshift prediction in the SDSS DR1 (113 000 galaxies)
spectroscopic sample using a 19:12:10:1 architecture, 3000 epochs
and 19 inputs (u − g, g − r, r − i, i − z, u, g, r, i, z, PetU50, PetU90,
PetG50, PetG90, PetR50, PetR90, PetI50, PetI90, PetZ50, PetZ90) as
input pattern. In the lower panel (training set on the left, test set on the
right) the training set has been built adopting a grid with a fixed step
dz = 0.000012 and extracting one galaxy for each interval of the grid
(24 892 galaxies in total). In the upper panel (training set on the left,
test set on the right) the training set has been built extracting randomly
a sample of the same size (24 892 galaxies) of the uniform sample. In
left panels only one point every 16 is plotted, while in the right panels
only a point every 50 is plotted.

3. A priori knowledge (such as morphological properties, ap-
parent luminosity, etc.) can be taken into account.

4. There are no assumptions concerning the distribution of the
input variables.

5. Feed-forward NNs can also be implemented via hard-
ware, in the so called machine learning scheme. Neural
processors have the same generalization and learning
ability as the MLP simulated via software (Battiti &
Tecchiolli 1995), but with an extremely high velocity per-
formance (106−7 galaxies per second, a very useful feature
in the training phase).

Future developments include a better treatment of photometric
errors and upper limits, and the recognition of characteristics
of the galaxies (e.g. the type) from the input colors and/or mor-
phological features (such as the Sersic index, luminosity pro-
files, etc.).
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